

Aerial Land Inspection System

May 1617
Sponsored by Vermeer Corporation

Introduction **Planning** Design Testing Conclusion

Problem Statement

- Decline of skilled operators for agricultural equipment
- Increased interest in remote controlled machinery
- View the environment prior to arrival
- Automate the capture process

Project Deliverables

- Map the terrain of a future work site
- Generate a quadcopter flight path based on user input
- Autonomously fly the quadcopter and capture images
- Create a VR-compatible 3D model from the images

Introduction Planning Design **Testing** Conclusion

Functional Requirements

- Sustained flight in adverse weather
- At least 20 minutes of flight time
- Fly up to ½ mile away from controller
- Take images with more than 50% overlap
- Model generated in less than 6 hours
- Model is viewable in a virtual reality platform

Non-Functional Requirements

- Generate sharp, accurate model
- Terrain agnostic
- System contains safety measures

Risks and Considerations

- FAA Regulations
 - Quadcopter registration
 - System altitude limit
- Battery Life
 - Flight pattern
 - Testing area
- Winter
 - Limited testing period

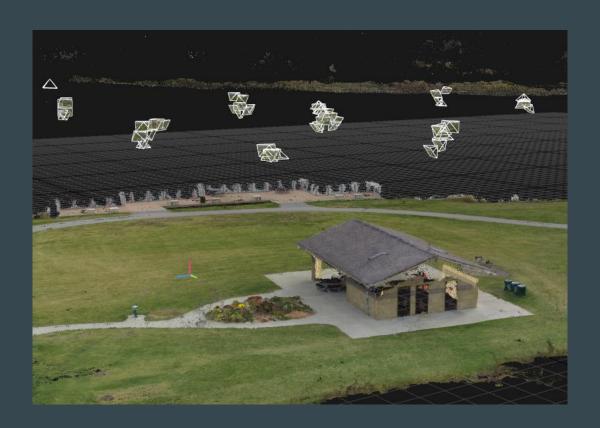
Market Research - Quadcopters

- Lumenier QVA250 Kit with OpenPilot
- Parrot Bebop
- DJI Matrice 100
- DJI Phantom 3 Advanced

Photogrammetry

Transform 2D pictures into a 3D model

- 1. Align Images
- 2. Generate Point Cloud
- 3. Apply Texture
- 4. Export Model



Photogrammetry Challenges

- Generation time
 - CPU / GPU dependent
 - Software Dependent
- Polygon limit
 - Unity Game Engine
 - Model decimation

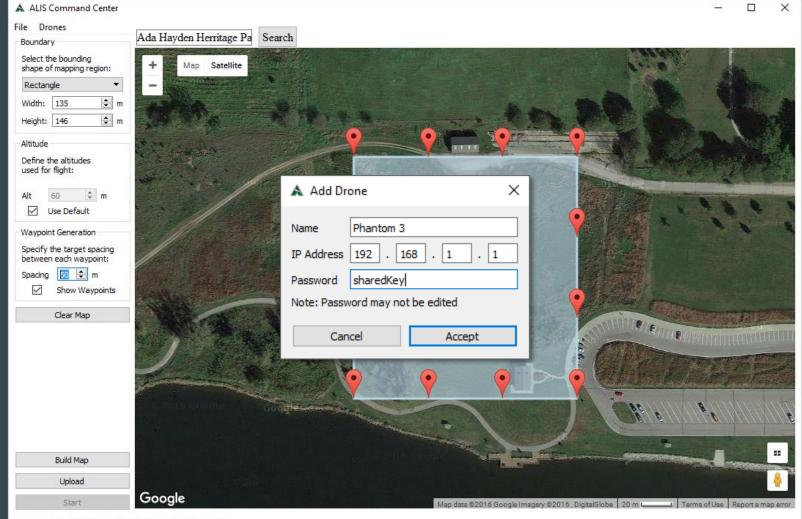
Market Research - Photogrammetry

- VisualSFM + CMP-MVS
 - Long generation time
 - No longer supported
- Pix4D
 - Expensive
- RealityCapture
 - Fast generation time

Prototype Costs

- Powerful Windows PC Already Available
- DJI Phantom 3 Advanced \$1000
- Android 4.2+ Device \$100
- Capturing Reality License \$112

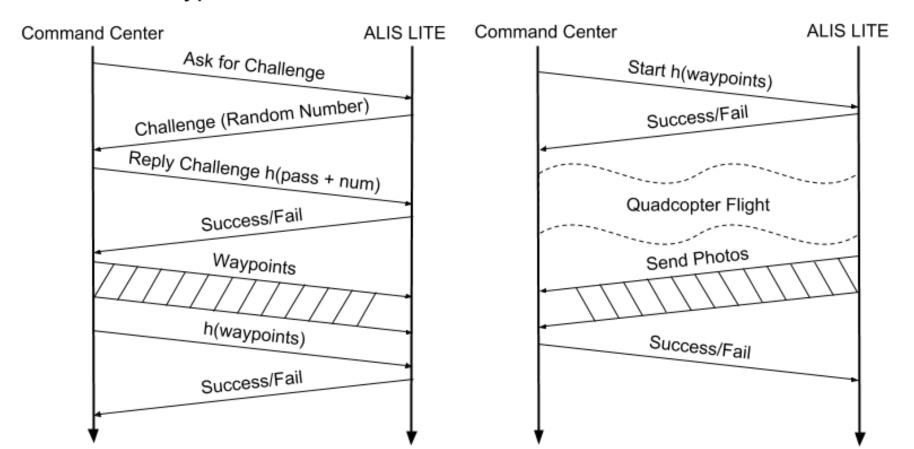
Introduction **Planning** Design Testing Conclusion


Design Challenges

- Quadcopter agnostic
 - Other systems may be used
 - Modular system
- DJI Mobile SDK
 - Android / iOS Only
 - Update to Version 3.0
 - Documentation

ALIS Command Center

- Built with Qt GUI framework using C++
- Google Maps integration
 - JavaScript to C++ Messages
- Automatic route generation
- Network communication to Android device



Networking Protocol

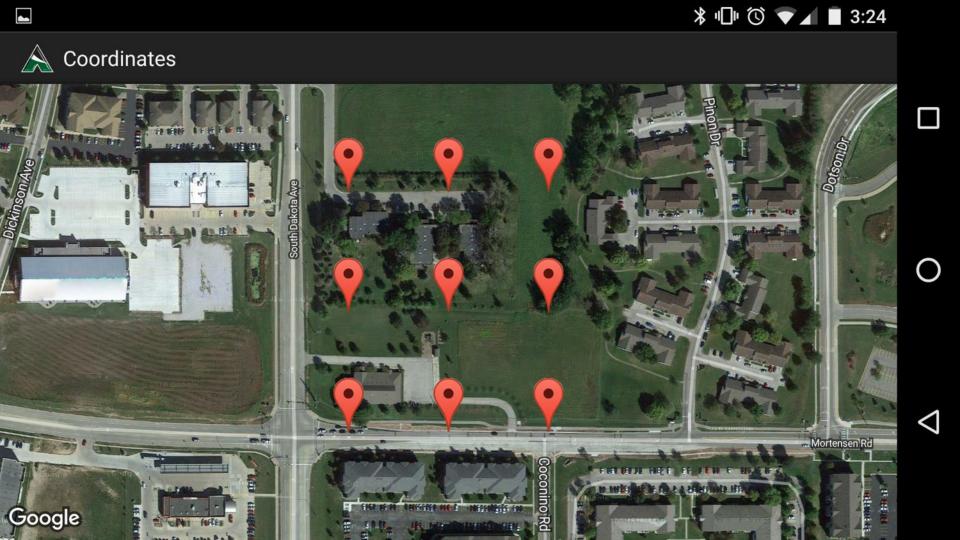
- Verify and Authorize Drone and PC
- Send Waypoints
- Remote Starting of Drone
- Retrieve Photos from Drone
- Fault Tolerant

Waypoint Transfer

Remote Start and Transfer

ALIS LITE

- Android Thin Client: acts as a bridge between PC and Quadcopter
 - See the state of the quadcopter
 - Map the coordinates
 - Force it to land
 - Photo transfer
- Uses DJI Mobile SDK 3.0.1 for quadcopter control
 - SDK is asynchronous, need to watch for race conditions
 - Challenge: SDK is also poorly documented



Start

IP Address: 192.168.1.223

Autopilot

Return Home

Latitude:42.073270 Longitude:-93.626337 Altitude:59.60

Roll:-4.50° Pitch:6.90° Yaw:-43.60° Gimbal Pitch:-45.80°

X Velocity:0.20 m/s Y Velocity:0.10 m/s Z Velocity:-0.10 m/s

Battery Level:75% Mission State:Doing Action

Current Waypoint:8 /12

Status:

Mission Started Successfully.

Takeoff Successful.

Mission Prepared Successfully.

Mission Upload Progress: 85.0%

Mission Upload Progress: 60.000004%

Mission Upload Progress: 35.0%

Successfully set home location.

Introduction **Planning** Design Testing Conclusion

Unit Testing

- Windows
 - Generates correct waypoints
 - UI usability testing
- Android
 - Receive mock waypoints and generate flight mission
 - Hard to test control of quadcopter

Integration Testing

- Waypoint Transfer
 - Error Conditions
 - Corrupted Data
 - Verify Network Traffic
- Quadcopter Communications
 - Quadcopter accepts mission
 - System safety features

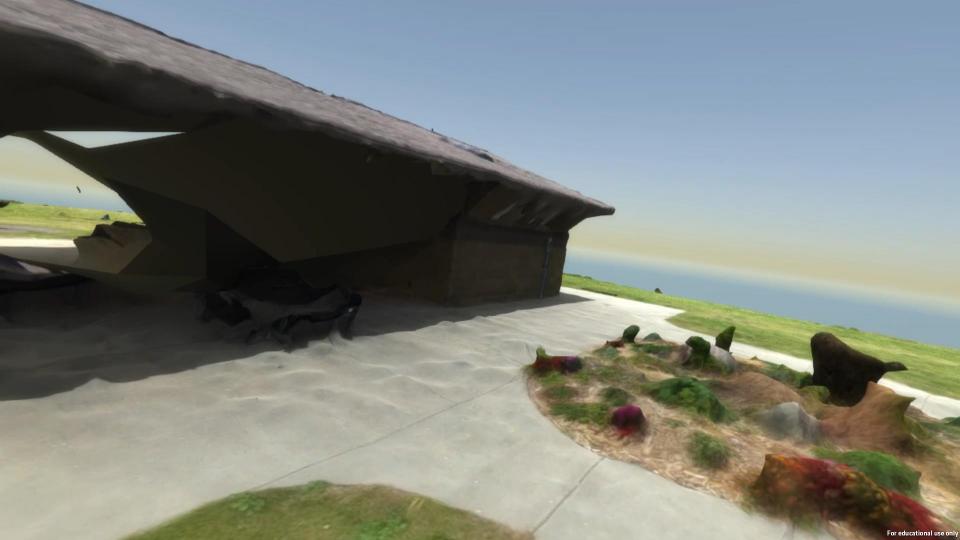
Photogrammetry Testing

- Visual inspection
- Considerations
 - Size
 - Texture resolution
 - Accuracy

Introduction **Planning** Design Testing Conclusion

Conclusions

- Account for unforeseen difficulties
 - Iowa is windy
 - FAA drone registration
- Good documentation can make or break a library
- Functional prototype delivered


Future Work

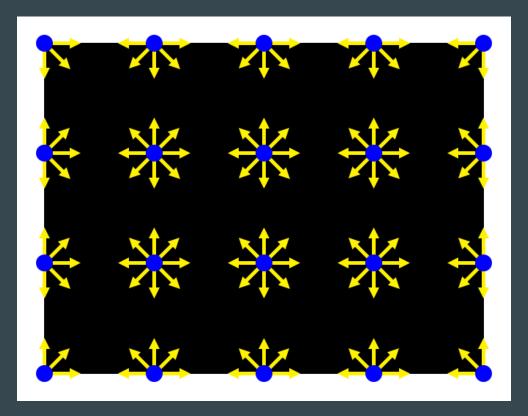
- Windows
 - Increase Google Maps Responsiveness
 - Add Additional Flight Patterns
 - Flight boundaries
- Android
 - Polish UI
 - Improve photo download
 - Send drone status to PC

Future Work

- Networking
 - SSL secure communications
 - Improve error handling
- Photogrammetry
 - Automate model generation
 - Model decimation
 - Model accuracy analysis

Questions

Schedule


September	Plan the high-level project and conduct market research
October	Purchase components Plan the Windows and Android applications
November	Begin work on Windows and Android applications Testing of photogrammetry software
December / January	Working prototypes of Windows and Android applications
February	Working prototype of communication between subsystems 3D Model Generation from captured images
March	Completed system - Windows and Android applications done Photogrammetry pipeline integrated into system
April	Bug fixes

Photogrammetry Process

- 1. Feature Detection
- Pairwise Matching
- 3. Sparse Reconstruction
- 4. Dense Reconstruction
- 5. Texture Application
- 6. Model Output

Image Generation Pattern

